Cryptanalysis of full round Fruit
نویسندگان
چکیده
In FSE 2015, Armknetcht et al. proposed a new technique to design stream cipher. This technique involves repeated use of keybits in each round of keystream bit generation. This idea showed the possibility to design stream ciphers where internal state size is significantly lower than twice the key size. They proposed a new cipher based on this idea, named Sprout. But soon Sprout was proved to be insecure. In Crypto 2015, Lallemand et al. proposed an attack on Sprout, which was 2 times faster than the exhaustive search. But the new idea used in Sprout showed a new direction in the design of stream cipher, which led to the proposal of several new ciphers with small size of internal state. Fruit is another cipher in this direction proposed recently where both the key size and state size are 80. So far, there is no attack against this cipher. In this paper, we attack full round Fruit by a divide-and-conquer method. We use several types of sieving to reduce the possible candidates for an internal state. Our attack is equivalent to 2 many Fruit encryption, which is around 16.95 times faster than average exhaustive key search. This is the first proposed attack against Fruit.
منابع مشابه
Impossible Differential Cryptanalysis on Deoxys-BC-256
Deoxys is a final-round candidate of the CAESAR competition. Deoxys is built upon an internal tweakable block cipher Deoxys-BC, where in addition to the plaintext and key, it takes an extra non-secret input called a tweak. This paper presents the first impossible differential cryptanalysis of Deoxys-BC-256 which is used in Deoxys as an internal tweakable block cipher. First, we find a 4.5-round...
متن کاملBiclique Cryptanalysis of Block Ciphers LBlock and TWINE-80 with Practical Data Complexity
In the biclique attack, a shorter biclique usually results in less data complexity, but at the expense of more computational complexity. The early abort technique can be used in partial matching part of the biclique attack in order to slightly reduce the computations. In this paper, we make use of this technique, but instead of slight improvement in the computational complexity, we keep the amo...
متن کاملA new method for accelerating impossible differential cryptanalysis and its application on LBlock
Impossible differential cryptanalysis, the extension of differential cryptanalysis, is one of the most efficient attacks against block ciphers. This cryptanalysis method has been applied to most of the block ciphers and has shown significant results. Using structures, key schedule considerations, early abort, and pre-computation are some common methods to reduce complexities of this attack. In ...
متن کاملImpossible Differential Cryptanalysis of Reduced-Round Midori64 Block Cipher (Extended Version)
Impossible differential attack is a well-known mean to examine robustness of block ciphers. Using impossible differ- ential cryptanalysis, we analyze security of a family of lightweight block ciphers, named Midori, that are designed considering low energy consumption. Midori state size can be either 64 bits for Midori64 or 128 bits for Midori128; however, both vers...
متن کاملCryptanalysis of some first round CAESAR candidates
ΑΕS _ CMCCv₁, ΑVΑLΑNCHEv₁, CLΟCv₁, and SILCv₁ are four candidates of the first round of CAESAR. CLΟCv₁ is presented in FSE 2014 and SILCv₁ is designed upon it with the aim of optimizing the hardware implementation cost. In this paper, structural weaknesses of these candidates are studied. We present distinguishing attacks against ΑES _ CMCCv₁ with the complexity of two queries and the success ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017